点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:盈彩投注_平台推荐安卓版v2.9.1(2023已更新)
首页>文化频道>要闻>正文

盈彩投注_平台推荐安卓版v2.9.1(2023已更新)

来源:盈彩技巧0799-11-14 17:48

  

乡村“守艺人”,巧手成就致富梦 ******

【一线讲述】

编者按

广袤山乡,有这样一群人:他们默默无闻,却靠着一双双巧手传承传统技艺、助力家乡发展。雕刻彩绘、造屋筑桥、器具制作、刺绣印染……有他们的地方,就有民俗风物之美,也有产业致富之路。他们,拥有一个朴实无华的名字——乡村工匠。

乡村“守艺人”,巧手成就致富梦

90后重庆小伙儿辜国强在组装花丝镶嵌作品“凤引九雏”。新华社发

乡村“守艺人”,巧手成就致富梦

在浙江湖州市八里店镇潞村,陶瓷艺人在瓷器上作画。新华社发

在日前召开的中央农村工作会议上,习近平总书记强调,“要坚持本土培养和外部引进相结合”“育好用好乡土人才”。此前,国家乡村振兴局、教育部等8部门联合印发的《关于推进乡村工匠培育工作的指导意见》,要求围绕巩固拓展脱贫攻坚成果、全面推进乡村振兴,挖掘培养一批乡村工匠,促进农民创业就业,为乡村全面振兴提供重要人才支撑。今天,让我们走近四位乡村工匠,观摩他们的“指尖绝活”,倾听他们的奋斗故事,感受他们传承技艺、惠泽一方的拳拳初心。

这里的琴声绕梁不息

讲述人:河南确山县农民制琴师王金堂

扛起锄头,我们是耕田种地的一把好手;拿起工具,我们是世界提琴制造业中响当当的“确山师傅”。全球90%以上的提琴来自中国,而中国提琴产量的40%左右,特别是中高档手工提琴产量的80%以上都出自我们确山人之手。

40多年前,16岁的我挤上火车一路向北,怀着“学门好手艺”的心气儿,去北京闯荡。几经周折,终于进了一家工艺美术厂当上临时工,跟着师傅学习制作工艺小提琴。一年后,老板看我笃实好学,就让我当上了车间负责人。后来,我又到一家提琴作坊当学徒。

提琴制作工艺复杂,有拼板、刮板、音孔音梁、刻头、装头、油漆、装配等多道工序,每道工序都要精益求精。比如,拼板时如果黏合不牢,就会影响后续每道工序;刮板的尺寸和弧度高低一定得精确,否则直接影响提琴音质。

经过两年多的学习、练手,我掌握了制琴的关键技术,也萌生了创业的念头。我白天打零工、卖煎饼,晚上继续钻研制琴,同时,动员在京打工的老乡一起干。1990年,我们终于和一家木材厂谈拢,合作办起了一家琴坊。打这以后,我的制琴生意越做越好,带出来的许多老乡也陆续建起了自己的琴坊。

“确山师傅”在北京干得风生水起,家乡一直很关注。不久后,确山县政府和在京确山籍老乡创办的提琴生产企业签了合作协议,我们整体迁入县产业集聚区“确山小提琴产业园”,为一个梦想而努力——把确山打造成全国知名的中高档提琴生产基地。

现如今,全县制琴及配套企业已经发展到144家,从业人员2600多人,产品包括小提琴、中提琴、大提琴、低音贝斯及配件等30多个系列、400多种型号,年产提琴约40万把,年产值6亿元左右,年出口创汇超过2000万美元。

从外出“打工潮”到返乡“创业潮”,我们认识到:要想产业长远发展,关键是不断壮大本土人才,让产业发展有源源不断的源头活水。

2020年1月,确山县手工提琴制作协会挂牌成立,吸纳了100多家会员,大家推选我担任协会会长。针对制琴人才短缺问题,我们制定了“5年计划”,划定了确山提琴行业标准,通过加强函授、培训,增强“确山琴师”的业务知识和文化素养。

我们这些“琴一代”,也有很多遗憾。几年前,在中国(上海)国际乐器展上,以色列乐器商人约瑟夫在他的摊位上用小提琴演奏《梁祝》,吸引了不少人驻足观望。现场有人请我也演奏一曲,我当时就蒙了,连连摆手:“我们只会制琴,不会拉琴。”现在,越来越多的“琴一代”让孩子学琴,县政府还出资聘请了专业提琴教师,在镇里和县里的中小学校开设提琴特色班。每年都有很多确山学子选择音乐类专业深造,学成后回乡支持提琴产业发展,让这座提琴小城充满了青春活力。

我们相信,确山的琴声定会悠扬致远、绕梁不息。

自贡彩灯,温暖千家万户

讲述人:四川自贡胡氏花灯传承人万玲

有华人的地方,就有灯会。近年来,自贡灯会被列入国家级非遗名录,成为中华文化“走出去”的一张闪亮名片。胡氏花灯,就是自贡彩灯大家庭中的一员。

乡村“守艺人”,巧手成就致富梦

四川自贡彩灯。光明日报记者周洪双摄/光明图片

盈彩投注

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 高烧工房:TABOR挖起杆测评

  • 牛娃简历:四五岁懂核反应堆

独家策划

推荐阅读
盈彩漏洞前11个月国企利润同比增长15.6%
2024-08-06
盈彩计划群津巴布韦航空一架客机左发空中起火
2024-09-14
盈彩返点世园会开幕式晚会彰显中国风范
2024-11-14
盈彩交流群用一张表,解决和孩子的沟通问题
2024-02-12
盈彩官网平台深度:神盾舰数量超美日在亚太总和
2024-02-19
盈彩规则俄醉酒母亲推婴儿车横穿公路 2岁宝宝瞬间被撞飞
2024-12-22
盈彩官网中国科技公司IPO狂欢不再 硅谷成主角
2024-10-06
盈彩官网网址 养生| 补钙又补锌的能手,教你它的5种做法,家家必备!
2024-01-24
盈彩官方网站 海南9000元假宫颈癌疫苗案开出罚单:没收医院违法所得,罚款8000元
2024-02-10
盈彩APP网易网站相关资质证明
2024-07-18
盈彩下载app谈兵 | 伊朗无人机为何能贴脸拍美国航母?
2024-11-09
盈彩官方容闳为何拒绝太平天国封爵
2024-10-31
盈彩平台重复使用的食用油会促进乳腺癌转移
2024-07-27
盈彩手机版光明网3项重大主题宣传工作获表彰
2024-05-06
盈彩下载 健身达人必备:运动损伤恢复神器,你的私人按摩师
2024-05-10
盈彩注册网大众新迈腾曝光小失望
2024-03-12
盈彩邀请码科技引领 创享智造——企业出海赋能系列沙龙
2024-06-16
盈彩软件情侣捡到手机后狂刷微信购物:不觉得自己犯法
2024-04-17
盈彩客户端下载刘诗诗台北顺产金牛座男孩
2024-09-08
盈彩充值中国M99重狙阿勒颇战场发威
2024-06-19
盈彩app下载选公办校还是国际校?
2024-08-20
盈彩app量子保密通讯,经典派陷入的N个误区
2024-12-20
盈彩手机版APP用一部传记,怀念斯坦·李
2024-02-16
盈彩论坛火箭数月前向联盟申诉 勇士从重大比赛中判罚获益
2024-05-07
加载更多
盈彩地图